Teaching Mathematics to Students with Significant Disabilities and Complex Communication Needs

Kate Fanelli
kate.fanelli@altshift.education

Hello my name is

Kate

kate.fanelli@altshift.education
encompassing Richigan's Integrated $\sqrt{12}$ Mathematics Initiative

1. Communication strategies
2. Math strategies
3. Opportunity to learn more

FOUNDATIONS OF MATH

Teaching Students with Significant Disabilities

What "programs" are there for teaching students with disabilities? What about students who are severely or multiply impaired?

A math teacher? Oh no, he's never had a math teacher.

Practical Lives

Communication

Be systematic
Fascinating

Understand relationships

Imagination

Staves 2001

Achieving Fluency: Special Education and Mathematics

Arthur J. Baroody
 "Learning: A Framework"

NCTM TEACHERS OF MATHEMATICS

How much math instruction is happening in your program and what does it typically involve?

- How do we make sense of mathematics goals for our classrooms?
- How do we maintain rigor for our students and maintain functional goals?
- How do we teach a subject that we may feel unprepared to teach?

First Things First: Communication

Early learning

Assimilation and Accommodation

Staves 2001, Butterworth 1999

Early learning

Sensory
exploration

Sharing what you know with others

Comparing responses

Reintegrating new ideas into your understanding

Assimilation and Accommodation

Gather
information
through
physical
senses

Gather information through cultural experiences

Develop elementary ideas about quantities and numbers

Number module brain circuitry

Staves 2001, Butterworth 1999

Personal Math
 (sensory and observation)

Staves 2001

Personal Math
 (sensory and observation)

Social Math
(communication with others)

Numeracy

Staves 2001

Without communication,

 there is no teaching or learning.
Communication Strategy \#1: Collaborate

Communication Strategy \#2: Provide a reason and means to communicate

Communication Strategy \#3:
Provide a means for communication everywhere, all the time

Communication Strategy \#4: Stick with it

Important:

The staff AND the student need to know how to communicate via the AAC device or system

4 Communication Strategies

- Collaborate
- Provide a need and means for communication
- Provide means for communication everywhere all the time
- Stick with it

Next Things Next:

Evidence-informed

 Mathematics Instruction
Math Strategy \#1: Teach to the analog brain

We teach digitally but we ALL have analog brains!

Dehaene 1997

The Accumulator Model: Our Analog Brain

The Magnitude Effect

The Distance Effect

Dehaene 1997

The Distance Effect

Teaching to the Analog Brain

- Start with quantities
- Use manipulatives
- Talk about "How many?"
- Counting for a purpose

Math Strategy \#2:

 Connect quantity, language, and symbols
Sharon Griffin
 Core Image of Mathematics

V. Faulkner and DPI Task Force adapted from Griffin, 2003

What is this...

Adapted from Faulkner, 2012

What is this...

Clap, Clap, Clap

digit digit digit

\square
\square
\square

Math Strategy \#3: Repetition with Variety

What should be repetitive?

- The basic structure of the lesson
- The math goal of the lesson
- Repetition should not exceed 5 instances

Incorporating Variety

- Objects/Pictures used for counting
- Student selection of objects
- Cards/Dice/Random Drawing
- Choosing whose turn it is
- Having students create the question
- Books or video

Math Strategy \#4: Teach the BIG Ideas

Burning Question

Where do I start?

Douglas H. Clements and Julie Sarama

Trajectories

Learning Trajectories for Primary Grades Mathematics

tinyurl.MathTrajectory

Learning Trajectories

- Saying numbers
- Rote counting to 5 then 10
- Counting collections of 5 then 10
- Creating collections of 5 then 10
- Subitizing
- Some/All
- Composing numbers to 5 then 10

Math Strategy \#5: Direct Instruction

How can mathematics instruction be strengthened in your program?

3 Major Takeaways

We teach digitally but we ALL have analog brains!

Dehaene 1997

Sharon Griffin
 Core Image of Mathematics

V. Faulkner and DPI Task Force adapted from Griffin, 2003

Communication is Key

Kate Fanelli

kate.fanelli@altshift.education

At our website

- Newsletter Subscription: updates on this and other professional learning opportunities
- Foundations of Math: Teaching Students with Significant Disabilities
- August 3
- October 4 and 5
- November 7 and 8

References

- Butterworth, B. (1999). The mathematical brain. London: Macmillan.
- Clements, D. and Sarama, J. (2014). Learning and Teaching Early Math: The Learning Trajectories Approach. New York: Routledge.
- Dehaene, S., 2011. The Number Sense: How the Mind Creates Mathematics. New York :Oxford University Press.
- Geary, D. C., \& Hoard, M. K. (2003). Learning Disabilities in Basic Mathematics. In J. M. Royer (Ed.), Mathematical Cognition. Greenwich, CT: Information Age Pub.

References Continued

- Griffin, S. (2003). The development of math competence in the preschool and early school years: Cognitive foundations and instructional strategies. In J. M. Royer (Ed.), Mathematical Cognition. Greenwich, CT: Information Age Pub.
- Griffin, S. \& Case, R. (1996). Number worlds: Kindergarten level. Durham, NH: Number Worlds Alliance.
- Staves, L. (2001). Mathematics for Children with Severe and Profound Learning Difficulties. New York, NY: David Fulton.
- Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749-750.

